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Abstract 

We present the complete NLO QCD analysis of the photon structure 
functions FJ(x, Q2) and F,‘(z, Q*) for a real photon target. In particular we 
study the heavy flavor content of the structure functions which is due to two 
different production mechanisms, namely collisions of a virtual photon with 
a real photon, and with a parton. We observe that the charm contributions 
are noticeable for @(z, Q*) as well as F,‘(s, &*) in the x-region studied. 
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1 Introduction 

In the past two decades there has been considerable interest in the study of 
photon-photon interactions in electron-positron colliders. When one photon 
is virtual and the other one is almost real the analogy with deep-inelastic 
electron-nucleon scattering motivates the introduction of the corresponding 
structure functions Fl(x, Q*) (k = 2, L) for the photon. The deep-inelastic 
structure function F,‘(x,Q*) wss originally measured by the PLUTO col- 
laboration [l] at PETRA using single-tag events in the reaction e- + e+ + 
e- + e++ hadrons. In the past several years there has been a series of new 
measurements at PETRA, PEP and TRISTAN by several groups, includ- 
ing CELLO [2], TPC2y [3], TASS0 [4], JADE [5], AMY [6], VENUS [7] 
and TOPAZ [8]. All these groups concentrated on the measurement of the 
light-quark contribution to FJ(x, Q*). The heavy-quark component (mainly 
charm) has been hard to extract due to problems identifying charmed parti- 
cle decays so its contribution to the data was sometimes removed according 
to a Monte Carlo estimate. In the near future higher-luminosity runs at 
TRISTAN should yield some information on heavy-quark (mainly charm) 
production and this is one reason that we study it here. At this moment 
the available data for F.J(z,Q’) are in the region 0.03 < I < 0.8 and 
1.31 (GeV/c)’ < Q* < 390 (GeV/c)2. Due to the experimental limitation 
that zy’ << 1 (for a definition of 2 and y see (2.5)), there are no data avail- 
able for the longitudinal structure function Fz(zr, Q’). However there exists 
some hope that Fz(z,QZ) can be measured [9] at LEP. Finally two-photon 
reactions are important to understand as background processes to the normal 
s-channel reactions at present and future efe- colliders. These machines will 
have a large amount of beamstrahlung [lo], [ll]. Therefore a basic input is 
the parton density in a photon which will be modified if higher order pQCD 
corrections are included. 

As far as theory is concerned the first attempt to give a theoretical de- 
scription of the photon structure function in the context of perturbative 
QCD was given by E. Witten in [12]. He suggested that both the 5 and 
the Q2 dependence of these structure functions were calculable in pQCD at 
asymptotically large Q*. Thus from a theoretical point of view this process 
should provide a much more thorough test of pQCD than the corresponding 
deepinelastic scattering off a nucleon target, where only the QZ evolution of 
the structure functions is calculable. The original optimism subsided once it 
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was realized that there were complications with experimental confirmation of 
this prediction at experimental (non-asymptotic) values of Q2 [13], [14]. For 
recent reviews see [15]. In particular there is a contamination of the purely 
pointlike pQC!D contribution by the hadronic component of the photon. This 
latter piece, which is most important at small virtualities, is not calculable 
in pQCD and must be extracted from experimental data. One of the ap- 
proaches used is to describe this hsdronic piece by p&on densities in the 
photon, analogous to the parton densities in a hadronic target. For parame- 
terizations see (161, [17], [18], [19], [20] and [21]. For a different approach see 

P21. 
In [19] a next to leading order (NLO) analysis was carried out for the 

photon structure function F,‘(cc, Q2). This analysis also includes the lowest 
order contribution coming from heavy flavor production, which is described 
by the Bethe-Heitler cross section corresponding to the process y’ + y + 
Q + Q. In this case the mass m of the heavy flavor is not neglected with 
respect to Q2 especially in the threshold region. If Q* >> m2 one encounters 
large logarithmic terms containing ln(Q*/m*), which have to be summed 
using the Altarelli-Parisi (AP) equations. This procedure provides us with 
the heavy flavor densities in the photon which are akin to the parton densities 
originating from the light quarks in the photon. The same procedure has been 
applied for the longitudinal structure functions Fl(z, Q*) in [23] but only in 
leading order. 

In this paper we want to extend the above analysis by including higher 
order pQCD corrections which were not considered in the literature so far. 
Since the NLO QCD corrections to the longitudinal coefficient functions due 
to massless partons [24] and heavy flavors [25] have been recently calculated 
we are now also able to present a NLO analysis for Fz(x, Q*). In addition 
we can also improve our knowledge of the heavy flavor content of Fz(x, Q*) 
by including the order Q, corrections to the Bethe-Heitler process y’ + y + 
Q+Q. We also include corrections to F~(cE, Q*) (k = 2,L) due to heavy flavor 
production mechanisms given by the processes y’ + IJ -+ Q + Q (corrected 
up to order oz ) and y’ + q(q) + Q + Q + q(q), where the incoming gluon 
and (anti)quark originate from the on-mass-shell photon. Furthermore we 
use the most recent gluon and (anti)quark densities in our analysis. 

Finally we should mention that there was a previous investigation of 
pQCD corrections to heavy quark production in [26], where it was assumed 
that both photons were off-mass-shell and a small value for the photon vir- 
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tuality was chosen for generating numerical results. Since these authors did 
not therefore encounter mass singularities they had no need to perform any 
mass factorization. Hence their method was different from the one we adopt. 

The paper is organized as follows. In section 2 we present the photonic 
and hsdronic coefficient functions corrected up to next to leading order in 
a., which are needed for the photon structure functions &?(z, Q*) (Ic = 2, L). 
In section 3 we show the differences between the leading order (LO) and the 
next to leading order (NLO) photon structure functions. In particular we 
discuss the effect of the heavy flavor component (mainly charm) originating 
from the hadronic as well as the pointlike photon interactions. 
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2 Higher-Order Corrections to the Photon 
Structure Functions 

The deep-inelastic photon structure functions denoted by FJ(x,Q*) (k = 
2, L) are measured in e-e+ collisions via the process (see fig.1) 

e-(p.)+e++e-(p:)+e++X, (2.1) 

where X denotes any hadronic state which is allowed by quantum-number 
conservation laws. When the outgoing electron is tagged then the above 
reaction is dominated by the photon-photon collision reaction (see fig.1) 

Y’(9) + Y(k) + x 7 (2.2) 

where one of the photons is highly virtual and the other one is almost on- 
mass-shell. The process (2.1) is described by the cross section 

d% -= 
dxdy J drzf:(i,-+)F 

x [O + Cl- Y)*IFZ’(G Q*) - ?/*Ftb> Q*)] , (2.3) 

where Fz(z, Q*) (I; = 2, L) denote the deepinelastic photon structure func- 
tions and (Y = e2/4n is the fine structure constant. Furthermore the off-msss- 
shell photon and the on-mass-shell photon are indicated by the four-momenta 
q and k respectively with q* = -Q* < 0 and k* z 0. Because the photon 
with momentum k is almost on-mass-shell, expression (2.3) is written in 
the Weizstiker-Williams approximation. In this approximation the function 
fJ(z,S/m~) is the probability of finding a photon y(k) in the positron, (see 
fig.1). The fraction of the energy of the positron carried off by the photon is 
denoted by z while ~6 is the c.m. energy of the electron-positron system. 
The function f.(z, S/m:) is given by (see [27]) 

f;(%, 3) = ; 1+ “,- 2)* In (1 - w; 4m2) , 
(2.4) 

L e 

provided a heavy quark with mass m is produced. The scaling variables z 
and y are defined by 

* 
‘= k.p,’ 

, 
Q = Pe - P, 9 
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where p,, p: are the momenta of the incoming and outgoing electron respec- 
tively. Following the procedure in [28] the photon structure functions in the 
QCD-improved parton model have the following form 

+sy(;, M*) G&z, $,mZ)) + Ay(;, M*) C[;(z, g, m2) 1 +x 

1 . (2.6) 

where the meaning of the symbols is explained below. 
The quantities CT and AT represent the singlet and non-singlet combina- 

tions of the quark densities in the photon respectively while the gluon density 
is represented by 97. The same flavor decomposition is also applied to the 
hadronic (Wilson) coefficient functions Ck,i (r = q,g) so that C&(2, Q*/M*) 
and C[:(z, Q2/M2) stand for the singlet and non-singlet coefficient func- 
tions respectively, and Ck,,(z, Q*/M*) denotes the gluonic coefficient func- 
tion, where M* is the mass factorization scale. The hadronic coefficient 
functions can be attributed to hard processes with a light quark or gluon 
in the initial state, such as y’ + q + q + g or y’ + g -+ q + ij, where the 
initial parton emerges from the real (on-mass-shell) photon. Hence they are 
multiplied by the corresponding parton densities in the photon. 

We also make a distinction between light and heavy flavor contributions 
to the coefficient functions. The latter are indicated by their explicit de- 
pendence on the heavy flavor mass m. For example in the contribution to 
G,i(Zt Q*/M*> m*) (second part of (2.6)) the virtual photon is attached either 
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to the incoming light quark as is the case in the reaction 7’ + q + q + Q + a 
or indirectly to the incoming gluon. Actually the Ck,i(ZyQ2/M2,m2) be- 
long to the same class as the hsdronic light parton coefficient functions 
presented in the first part of expression (2.6). The only difference is that 
Ck,i(T, Q*/M*, m*) receives contributions from a heavy flavor pair produced 
in the final state. 

In the third set of terms in (2.6) the heavy flavor coefficient functions 
originate from subprocesses where the virtual photon is attached to one of the 
outgoing heavy flavors, as for example in y*+g + Q+Q, so they are given an 
additional superscript H. Finally the fourth set of terms in (2.6) contain the 
photonic coefficient functions indicated by Ck,.7 coming from reactions such 
as 7’ + 7 --t q + q or 7’ + 7 + Q + Q. These originate from hard processes 
where the (on-shell) real photon is directly attached to the light or heavy 
quarks produced in the final state so there is no need for any convolution 
integral. 

The index i in (2.6) runs over all light active flavors whose number is given 
by n, and ei, eH stand for the charges of the light and heavy quarks respec- 
tively in units of e. The upper boundary of the integrals in (2.6) containing 
the convolution of the parton densities with the heavy flavor coefficient func- 
tions is given by 

The parton densities as well as the coefficient functions depend on the mass 
factorization scale M except for the Cc7 which can be calculated in pQCD 
without performing msss factorization. Notice that in addition to the mass 
factorization scale M the quantities in (2.6) also depend on the renormaliza- 
tion scale R which appears in the pQCD corrections via o.(R*). However in 
this paper we will put R = M. 

According to the origin of the photonic parton densities and the two differ- 
ent types of coefficient functions i.e., C k,pr &, (hadronic) and Ck,T (photonic) 
we will call the first three terms in (2.6) ( re p resented by the integrals), the 
hadronic photon parts, and the last term the pointlike photon part. Notice 
that both these terms are separately factorization scheme dependent as indi- 
cated by the presence of the scale M. In particular the scheme dependence 
of the pointlike photon part in (2.6) is due to the light quark contribution 
Ck,t(x, Q*/M*). The scheme dependence is cancelled by the hadronic photon 
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part due to the light quark contribution provided that the quark densities 
and the hadronic coefficient functions are computed in the same scheme ss 
Ck,,.(x,Q*/M*). The hadronic heavy flavor part is scheme dependent in it- 
self. The photonic heavy flavor piece is obtained without having to perform 
mass factorizaton and needs no parton distribution functions, and is thus not 
dependent on the factorization scheme. 

In the subsequent part of this section we will discuss the contributions 
to the coefficient functions in (2.6) which are needed for a next to leading 
order (NLO) description of the photon structure functions @(x,Q*) and 
F,‘(x, Q*). The results of our calculations will be presented in the plots of 
section 3. For these NLO calculations we also have to use the next to leading 
logarithmic (NLL) approximation to the parton densities, which are given 
for example in [19],[20],[21]. 

Starting with the NLL parton densities the singlet and nonsinglet combi- 
nations are written in the following way. Below the charm-quark threshold 
we have 

nf = 3 2 $e?=i , $ef=i, (2.8) 

C’=u’+ii~+dr+lP+ss^I+s1, (2.9) 

A-’ = ;(2u7 + 2fP - d7 - 8 - s^I - 3). (2.10) 

Above the charm-quark threshold and below the bottom-quark threshold the 
above quantities are changed into 

n, = 4 , geT=f , id=:, (2.11) 

C’=u’+21~+61+~+s7+s7+c~+c7, 

Ay=~(~~+ii7+c~+~-d7-~-sy-57). 

Finally above the bottom-quark threshold they become 

(2.12) 

(2.13) 

nf = 5 , $ef=+ , id=:, (2.14) 

C7=u7+~~+dl+(5y+s^I+s7+cy+c7+b^l+~~, (2.15) 
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A-’ = $3~~ + 3tZ-’ + 3c-’ + 3c7 - 2fl- 2& - 2~7 - 2s7 - 26’ - 267) (2.16) 

Because the photon is a charge conjugate eigenstate one can put the quark 
densities equal to the antiquark densities. 

We will now discuss the origin of the coefficient functions Ck,i (k = 2, L, 
i = q,g, 7) which appear in (2.6). Starting with the last terms, the photonic 
coefficient functions Ck,., are given up to next to leading order by the fol- 
lowing parton subprocesses. In the Born approximation the light quarks are 
produced by the reaction (fig.2) 

7*(q) +7(k) + q + B, 

while the heavy quarks are produced by the same reaction 

7*(q) + $1 + Q + Q, 

(2.17) 

(2.18) 

provided the square of the cm. energy denoted by s, where s = (k + q)*, 
satisfies the threshold condition s 1 4m *. The O(a,) pQCD corrections are 
given by the one-loop contributions to processes (2.17) and (2.18) (see fig.3) 
and the gluon bremsstrahlung processes (see fig.4) 

7*(q) +7(k) --t q+q+s, (2.19) 

-t’(q) + r(k) + Q + Q + g. (2.20) 

The parton cross section for the Born reaction in the case of light quarks 
(2.17) can be found in [14], [29]. In the case of heavy flavor production 
(2.18) the Born cross section is presented in [16], [28]. Notice that the above 
reactions are very similar to the ones where the on-mass-shell photon y(k) is 
replaced by a gluon g(k). The cross sections of the photon-induced processes 
constitute the Abelian parts of the expressions obtained for the gluon-induced 
processes which are presented up to order c~i for the case of msssless quarks in 
[24] and in the case of massive quarks in [25]. By equating some color factors 
equal to unity or zero in the latter expressions one automatically obtains 
the cross sections for the photon-induced processes above in particular for 
(2.19) and (2.20) (see Appendix). In the case of massless quarks the parton 
cross sections for (2.17), (2.19) contain collinear divergences which can be 
attributed to the initial photon being on-mass-shell. These singularities are 
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removed by mass factorization in the following way. We define 

&(~~ Q2! 4 = 7 1’ da i’ rlZ2~(~-%lh)ri~(~1rM2~~)CL.i(Z2~~)~ 

(2.21) 
where &,,(z, Q2,e) is the parton structure function, which is related to 
the parton cross section in the same way as the photon structure function 
Fz(r,Q2) is related to the cross section dLu/dxdy in (2.3). The parton 
structure function contains the collinear divergences represented by the pole 
terms e-j (j is a positive integer) where e = n - 4 (we use dimensional reg- 
ularization). These divergences are absorbed in the transition functions T4 
(i = y , q , g) which depend both on e and on the mass factorization scale 
M. They can be inferred from the Abelian parts of T+ in [14], [18], [29] and 

1301. 
Both the photonic and hadronic coefficient functions C,,i (i = y, q, g) 

which appear in the expressions for F2(r,Q2) and F,‘(z,Q*) in (2.6) are 
computed in the MS scheme. The coefficient functions C,,k in (2.6) and 
(2.21) can be expanded in a power series in a, as follows 

Cki =ci’+ I 1 -;yQ + ( “‘j;l;i2’)‘@j + . . . (2.22) 

which holds for the light as well as the hea 
8 

flavor contributions. The pho- 
tonic coefficient functions for light quarks Ck,.r and C& can be directly derived 
via the mass factorization formula (2.21) from reactions (2.17) and (2.19) re- 
spectively. The heavy flavor coefficients C~;‘“’ and CF;“‘, which are obtained 
without using mass factorization, originate from processes (2.18) and (2.20). 
Notice that in the case of massive quarks the parton structure functions corre- 
sponding to the reactions (2.18) and (2.20) d o not have collinear singularities 
and they can automatically be identified with the coefficient functions Ck”,. 

Using the mass factorization formula in (2.21) one can also obtain the 
order o, contributions to the hadronic coefficient functions Cl:: coming from 
process (2.19). The higher order contributions to the hadronic coefficient 
functions emerge when one calculates the NLO corrections to process (2.17). 
For ,example the gluonic coefficients Citi can be inferred from the contribu- 
tions to 

Y*(Q)+-dk)+q+-T+q+~, (2.23) 
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while Ct$) can be inferred from the contributions to 

-T(q) + -r(k) --t q + q + Q + a. (2.24) 

Fortunately there is a quicker method to obtain the same information. The 
hadronic coefficient functions needed for the O(c2.) renormalization group im- 
proved photon structure functions Fz(x, Q2) (2.6) can also be obtained from 
deep inelastic lepton hadron scattering, where the higher order corrections 
are known. For light flavor production we have listed the parton subprocesses 
and the corresponding coefficients which follow from these reactions in table 
1. We have given the corresponding information for heavy flavor production 
in table 2. In lowest order the photonic and hsdronic coefficient functions 
have been presented in the literature (see [14], [29], [23],[28]). Since these au- 
thors used a notation which is different from ours we will present the relevant 
formulae below. In next to leading order the expressions for the coefficient 
functions are obtained from [24] (light quarks and gluons) and [25] (heavy 
quarks). However the expressions are too long to be presented in a paper ‘. 
The method whereby the higher order coefficients can be derived from the 
expressions in [24], [25] is explained in the Appendix. 

Starting with the photonic coefficients for light quarks (see reaction (2.17)) 
they are given by 

Q2 @~(z,s) =4{~~+(1-z)?}{ln~+ln(I-~)-In(z)j+32t(l-~)-4~ 

(2.25) 
and 

C&, g) = 162(1 - z). 

For massive quarks in the final state (see (2.18)) we have 

(2.26) 

C;~‘(z,Q2,m2) = [{4-8r(l-~)+~z(I-3r)-$$~}L 

+{ -4+32r(l-z)-16$r(I-z)}/-]; 

(2.27) 

‘These functions are available from smith&lsebeth.physics.sunysb.edu. 
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CH*(‘)(z,Q2,m2) = 16z(l - $/T-2$] , h-l (2.28) 

where m is the heavy-flavor mass and 6 is the c.m. energy of the virtual 
photon-real photon system. Furthermore we have 

s=(1-2)$ , L=ln 1 
l+Jm 1 1-J- 

(2.29) 

Formulae (2.27) and (2.28) can be found in [31],[32]. 
In the next order in o. process (2.19) (Fig.4) and the one-loop correc- 

tions to process (2.17) (Fig.3) g’ lve rise to the coefficients C$~(Z, Q2/MZ). 
In the csse the outgoing fermion lines in figs.3,4 stand for the heavy flavors 
(see reactions (2.18) and (2.20)) the corresponding coefficients are given by 

C:;‘)k Q*, m’). More information about the higher order corrections to the 
photonic coefficient functions can be found in the Appendix. 

In zeroth order of a, the hadronic coefficient functions are 

4:(z,$) = 6(1-z), (2.30) 

(2.31) 

C&&) = 0, (k=2,L). (2.32) 

In order (YS the hadronic coefficient functions originating from a light quark 
in the initial state (table 1) are given by 

= CF[{ (g-J+ - 2 - 22) 

x{In-$+In(l-r)-~}-2~In.z+~+~s 

+a(1 -~){31ng-9-4<(Z)}], (2.33) 

where the standard definition of a plus distribution is used, and 

c$z, $, = c,[4z] 
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Notice that in order a, there is no difference between Czi” and Ct:“). The 
coefficient functions for a gluon in the initial state and msssless quarks in the 
final state (table 1) can be derived from (2.25) and (2.26) via multiplication 
by a color factor 

(k = 2,L). (2.35) 

An analogous relation holds when the massless quarks in the final state are 
replaced by the heavy flavors (table 2) and we get from (2.27) and (2.28) 

CFf)(z, Q* ,m2) = T,C~;(z,Q”,m*), (k = 2,L). (2.36) 

The color factors which appear in the above equations are given by CF = 4/3 
and ‘T, = l/2 for the case of SU(3). 

The higher order oz corrections to the coefficient functions, describing 
massless partons only, are denoted by C.g/ where i = q, g (see table 1). They 

have been calculated in [24]. In the Appendix we have decomposed Ct/ into 

color fsctors so that we can infer the O(o,) photonic coefficients $4 from 

the Abelian part of C,$J. 
The O(oz) corrections to the heavy flavor coefficient functions given by 

C&, Q2/M2, m*) and Cc;(‘)(z, Q2/M2, mz) (table 2) are calculated for the 
first time in [25]. The relations between these coefficients and the ones derived 
in section 5 of [25] will be presented in the Appendix. By decomposing them 
in color factors we again can derive the photonic heavy flavor coefficient 
CF$” from the Abelian part of CF$). Since in lowest order the hadronic 

heavy flavor coefficient C~/(Z, Q2/M2, m2) only contributes up to the O(az) 
level, when i = q we do not have to distinguish between singlet (S) and 
non-singlet (NS) and we can put 

C,qb(2)(z,&*) =C~,f-‘2’(z,~,m2) = C&,Q2,m2). (2.37) 

The above expression indicates that in lowest order C~:(Z, Q2, m2) is deter- 
mined without having performed mass factorization which is indicated by its 
independence of the mass factorization scale M. This is because it originates 
from the Compton scattering process, which in lowest order does not have 
collinear singularities. 
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Finally in table 3 we have translated our notations for the coefficient 
functions into those used in [14], [23], [28], [29]. We also list the new contri- 
butions to the photon structure functions which were not included earlier in 
the literature. 
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3 Results 

In this section we will discuss the NLO QCD corrections to the photon struc- 
ture functions $(I, Q2) for k = 2, L. In particular we focus our attention 
on the heavy flavor contributions (mainly charm), which originate from the 
hadronic as well as the photonic coefficient functions in (2.6). Since heavy 
flavors can be produced either in virtual-photon parton or in virtual-photon 
real-photon reactions we will call the former hadronic heavy flavor production 
and the latter photonic heavy flavor production. 

In the subsequent part of this section we want to make a comparison 
between the LO and NLO description of the photon structure functions, 
where all contributions listed in tables 4 and 5 are included. Furthermore we 
want to investigate the relative magnitude of the heavy flavor (mainly charm) 
component of the structure function. We also show the difference between 
the msssless and massive heavy flavor approach. When the heavy quarks are 
treated as massless, their contribution to the photon structure functions are 
given by the corresponding parton densities in the photon convoluted with the 
light quark and gluon coefficient functions. This description is appropriate 
when Q2 >> m2. If Q2 is of the same order of magnitude as m2, then the 
massive quark approach has to be adopted and the heavy flavor production 
is described by the heavy flavor coefficient functions in (2.6) which can be 
computed order-by-order in perturbation theory. 

In the literature a LO analysiswas given for F$(x, Q2) in [16] and Fz(s, Q*) 
in [23]. Here all LO coefficient functions in tables 4 and 5 were included ex- 
cept for the ones related to hadronic heavy flavor production, (i.e., y’ + g --t 
Q + 0). The last contributions were also neglected in the NLO analy- 
sis for F$(r,Q2) in [19] and the photonic heavy flavor contribution from 
y’ + y --t Q + Q was only taken into account in lowest order. A NLO anal- 
ysis of Ft(z, Q2) could not be carried out previously because the order a: 
contributions to all the longitudinal coefficient functions were not known un- 
til recently. Since all NLO coefficient functions are now known, and they are 
listed in tables 4 and 5, we are able to present a complete NLO description 
for both F;(x, Q2) and for F~(P, Q2) as well as make a comparison with the 
LO descriptions. 

In our plots we adopt the LO and NLO parametrizations of the parton 
densities in the photon from [19] (for other sets see [20], [21]). For n, = 
3 we use Aqco = 232 MeV at leading order and &co = 248 MeV at 
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next to leading order. For n, = 4, both the leading order and the next 
to leading order &co are set equal to 200 MeV. In leading order, we use 
a one-loop result for the running coupling constant and in next to leading 
order a two-loop corrected running coupling constant is chosen, see e.g. [19]. 
All calculations are done with M2 = Q2, except where otherwise indicated. 
In our analysis, when we take the charm quark to be massive, we take m, = 
1.5 GeV/cs. Furthermore we take three light flavors (n, = 3) for the parton 
densities, the coefficient functions and the running coupling constant. When 
we treat the charmed quark as massless, it then takes on the identity of an 
ordinary parton; so we set n, = 4. The bottom and top quark contributions 
will be omitted since they are negligible for the Q2 values accessible at past 
and present experiments. In the LO approximation the corresponding parton 
densities are multiplied by the coefficient functions in tables 4 and 5, which - 
are indicated by LO. In NLO we have chosen the MS scheme for the parton 
densities, the coefficient functions and the running coupling constant. The 
coefficient functions which have to be added to the LO ones are indicated 
by NLO in tables 4 and 5. In order to get a consistent NLO analysis for 
the structure functions we follow the procedure in [19], which is explained 
in [18]. Therefore we multiply the LO coefficient functions by f’ and the 
NLO coefficient functions by f,’ in (2.6) (for the notation of f7 and f,’ see 
eqn. (A.23) and the discussion in the Appendix A in [19]). Notice that in 
[I91 the parton densities described in Appendix A were presented in the DIS, 
scheme. However they can be changed into the MS scheme via eqns.(4)-(6) 
in [19]. After changing the lowest order photonic coefficient function Cz: in 
the DIS, scheme we have checked that both schemes lead to the same result 
provided the change of eqn(4) in [18] is only applied to the parton density 
denoted by f’ as defined above. 

We now compare the results from our calculations for F?(z, Q*) first with 
data from PLUTO [l] (Q2 = 5.9 (GeV/c)2) and then with data from AMY 
[6] (Q2 = 51 (GeV/c)2). We also show predictions for Fz(z, Q2). 

In fig.5 we make a comparison between the LO and NLO aproximation 
for F;(x, Q*) at Q2 = 5.9 (GeV/c)2, where the heavy charm components 
(hadronic and photonic) are included. The low-z hump is due to charm 
production, which turns off at about z = 0.4 (the threshold value). We also 
show separately the contributions due to massive charm production. When 
this contribution reaches its maximum value it constitutes about 20 % of 
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the structure function F,’ in LO and 30 % in NLO. The O(as) correction to 
the Born contributions to massive charm production are quite large, adding 
approximately another 50 % to the Born terms. Overall, we observe that LO 
and NLO are not very different. Note that the data also seem to indicate the 
presence of a charm component. 

In fig.6 we do the same for Fz(z, Q2) at Q2 = 5.9 (GeV/c)2. This is for 
theoretical purposes only: there are no data presently available for FL7 at any 
value of Q2. We see from this and the previous figure that there is not much 
difference between the LO and NLO results both for F. and Fl. However, 
the heavy charm component of Fz is less important than in the case of FJ. 
At LO it is about 15 % where this component reaches its maximum, whereas 
in NLO it amounts to about about 30 % also. The latter is due to the fact 
that the O(as) corrections to the heavy charm component of FL7 are ss large 
as 100 %. 

In fig.7 we present F2(z,Q2) at LO for three different choices of mass 
factorization scale. Note that in this case the only variation is due to the 
parton densities. The variation in the M dependence is uniform over the 
whole r-range. In fig.8 we do the same for Fl(s, Q2) at Q2 = 5.9 (GeV/c)*. 
Here there is additional scale dependence due to o.(M*). Hence, contrary 
to fig.7, the curve for M = Q/2 is the upper one here. 

Fig.9 shows the same as fig.7 but now at NLO. There is now additional 
scale dependence due to ct.(M’) and the mass factorization scale logarithms 
of the type ln(Q2/M2) in the coefficient functions (see e.g (2.25) and (2.33)). 
Note that the scale dependence is reduced in the small-r region compared to 
the LO case. However at very large x values, where the charm contribution 
can be neglected, the scale variation is larger than in the LO case. This 
is due to the pointlike light quark contribution, which drops increasingly 
dramatically as one increases M. At small z this is partially offset by the 
increase of the charm contribution. 

In fig.10 we show the same plots as in fig.9 for Fz((z,Q*). The scale 
variation is small as in the LO case. 

We now turn to a comparison of results for massive versus massless charm 
contributions as defined above. Since the differences are essentially the same 
in the LO case as in the NLO case we only show plots for the latter. Therefore 
in fig.11 we compare the NLO msssless (no = 3) plus the massive charm- 
quark contribution to F;(x, Q2) at Q2 = 5.9 (GeV/c)2, with the NLO msss- 
less (nf = 4) contribution. Note that the massless n, = 4 contribution is 
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smaller than the curve where we take n/ = 3 massless and a massive charm 
quark, even at large x where the charm contribution is zero. This is due 
to a change in &on and consequently a change in the parton distribution 
functions. However the difference between the massless and massive cases is 
small for large I, where threshold effects are negligible. 

In fig.12 we show the same plots for Fz(x, Q2) in NLO at Q2 = 5.9 (GeV/c)2. 
Note the enormous increase that occurs in going to the n, = 4 massless case. 
Since this effect is already there in the LO case it can be understood as fol- 
lows. In the case of nf = 3 where charm is considered massive one includes 
the coefficient function Ct!, (2.26), which is multiplied by 2/9 and Cz;‘o’ 
(2.28), which is multiplied by 16/81. If nf = 4 the charm is treated as mass- 
less and Czl(o) (massive charm) is replaced by Cafe (msssless charm). Since 
the latter is much larger than the former due to the additional suppression 
factor in (2.28) this explains why the result for nf = 4 is much larger than 
for nf = 3. 

In fig.13 we show the x-dependences of the massive hadronic charm con- 
tribution and the massive photonic charm contribution to FJ(x, Q2) at Q2 = 
5.9 (GeV/c)2 in LO and in NLO. The corresponding results for Fl(z, Q2) are 
shown in fig.14 in LO and in NLO. The interesting feature to note in all these 
figures is the complete dominance of the photonic charm production over the 
hadronic production. This makes F?(x, Q2) for massive charm production 
at moderate z a very promising test of pQCD, because of the lack of depen- 
dence on the hadronic component. Experimentally this is of course a very 
difficult quantity to determine, but perhaps not impossible. The same holds 
for Fl(x, Q*) for massive charm production, but that is even more difficult to 
determine experimentally. However for x < 0.01 the pointlike contributions 
to both FT and Fz for massive charm production become very small and the 
hadronic component begins to dominate. 

We now repeat all the figures for the Q2 = 51 (GeV/c)* value of the AMY 
collaboration. We remark that now the charm contribution switches off at 
r = 0.85. Here the heavy charm component becomes in general larger than 
in the csse for Q2 = 5.9 (GeV/c)2. For F$ it is 30 % in LO where this 
component reaches its maximum, and 40 % in NLO. For FL1 the percentages 
are roughly similar. Note however that the O(a,) corrections are smaller 
than for Q2 = 5.9(GeV/c)‘. For F. they are up to 15 % and for FL up 
to 30 %. The mass factorization scale dependence at large x for F;(z, Q2) 
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at NLO seems (fig.19) to be somewhat reduced compared to the case of 
Q2 = 5.9 (GeV/c)* but still larger than at LO (fig.17). 

To conclude, we have presented in this paper the first complete NLO 
analysis of F;(x, Q2) and Fz(x, Q2) containing both light and heavy quarks. 
Summarizing our findings we have seen that for both values of Q2 we con- 
sidered the NLO structure functions are not too different from the LO ones. 
This is not so surprising for F$(x, Q2) since we used the parton densities of 
[19] and most of the contributions were already included in their analysis ex- 
cept for O(crs) corrections to heavy quark production, which are numerically 
small. We see that F,7 has a moderate sensitivity to changes in the mass 
factorization scale except at large Z. 

For Fz(x, Q2) this is the first NLO analysis, and at the same time com- 
plete, since all heavy and light quark contributions have been included. We 
found that Fl(z, Q2) changes very little from LO to NLO, and is very stable 
under scale changes. Above z x 0.1 the hadronic production of charm is 
small compared with the photonic production, while the former is dominant 
for x < 0.01. All this would make a measurement of Fl(x,Q2) (e.g. at 
LEP2) an interesting prospect. 

Our results could be used to determine more accurate NLL parton dis- 
tribution functions for the photon. This would become especially relevant 
when data become available for F,’ for charm production, and for Fl. Fi- 
nally, we stress that if the heavy quark contribution could be extracted from 
a measurement of F; this would yield a very good test of perturbative QCD. 
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Table 1. 

List of deep inelastic virtual-photon-parton subprocesses up to O(az). 
The one and two-loop corrections to the lower order processes have been 
included in our calculations but are not explicitly mentioned in the table. 
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Table 2. 

2 
% r*+g+Q+&+s cHv(*’ k.9 

2 
% Y’ + d’?) --t ‘dd + Q + 0 

H NS 2 
ck,:2’ ) ck,p ” ) 

s 2)- 
= ck:,’ 

order 
1 

% 

parton subprocess coefficient function 

r’+g+Q+& P(” kg 

List of deep inelastic virtual-photon-partonic subprocesses contributing to 
heavy flavour production up to O(az). The one-loop corrections to the Born 
approximation have been included in our calculations but are not explicitly 
mentioned in the table. 
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Table 3. 

Notations in several papers for the hadronic and photonic coefficient func- 
tions. Notice that the expressions in (29) are in Mellin transform space. 
The blanks mean that these contributions were not considered in the papers 
quoted. 
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Table 4. 

order II mrton suborocess I coeffirimt, fimrtinn 

Y’ + Q(Q) + + 9 

Coefficient functions used in this paper for a leading order (LO) and a 
next-to-leading order (NLO) analysis of FJ(z, Q2)/o. 
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Table 5. 

order 

7*+7+9+t LO, NLO 

r*+r+Q+& c z:) LO, NLO 

1 
% 7’ + 44 + P(d + 9 C $(‘)(= C,S:b”) LO, NLO 

7’+9+4+~ c :; LO, NLO 

r’+g+Q+& F” L,g LO, NLO 

c’ i,; NLO 

r*+r+Q+&+g CH,(1’ L-l NLO 

7’ + m + q(d + 9 + 9 c :f”‘)(= C::‘) NLO 

Y’ + PC@ --t m + 43 + ad CNS @’ hl* 3 C::’ (Z C:,“*“‘) NLC 

7*+9+q+q+g CL i,; NLO 

r‘+s+Q+Q+g CH,(2’ Lc3 NLO 

J- 

Y* + dd --t d4 + Q + Q cxv(2 hl ) > CL,*’ 

L Coefficient functions used in this paper for a leading order (LO) and E 
next-to-leading order (NLO) analysis of Fz(z, Q*)/a. 
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Appendix 

In this Appendix we show how one can derive the O(az) coefficients corre- 
sponding to the reactions in tables 1 and 2 from the expressions calculated 
in [24] and [25] respectively. The O(c$) coefficients mentioned in table 1 are 
given by 

p.(2) 
k.q (2, Q2 M2) = C;Bpb(r, g) + C,&Bf;(z, g) 

+ ~TFW$~(Z, $1, (A.1) 

where Cam’*’ and C,?bs,(2) are the coefficients of the (cr./47~)~ term in eqns.(B.l) 
and (B.2) of [24] respectively. The singlet coefficients can be split into a non- 
singlet and a pure singlet piece as follows 

C$yt, g, = cy)(*, g, + cy)(*, s!&. 

The pure singlet coefficients C[:(2) can be written as 

C;:(2)(z, $) = n,T,C&(z, $) , 

W-4 

where Cz”’ and C[:(21 are the coefficients of the (as/4a)2 terms in eqns(B.3) 
and (B.4) of [24] respectively. Finally the gluonic coefficient is given by 

C$z, $) = n,T/C&$(z, $) + n,TfCAE$$, $), (-4.4) 

where CB and C.$z are the coefficients of the (a,/47~)~ terms in eqns(B.5) and 
(B.6) of [24] respectively. The color factors in SU(3) are given by Cp = 4/3, 
C,.+ = 3, Tp = l/2 and n/ denotes the number of light flavors. The O((Y*) 
photonic coefficient CL:; can be derived from the Abelian part of Cfi (A.4) 
and it equals 

c$*, g, = cpTg.(*, g, 
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The coefficient functions due to heavy flavor production (see table 2) are 
related to the coefficients defined in 1251 in the followina wav. In first order 

. ’ 
- ” 

in Q, we have (see also (2.36)) 

C:;‘)(z, Q2, m2) = =&&v, t) , 64.6) 

with 

C:~‘)b,Q2d) = ~~b$&d + clqb(a)}, (A.7) 

s -- 
7=dm2 

1 , F=$. 

In second order in o. one gets for i = Q, CJ 

64.8) 

and 

C$, Q2, m2) = 16s $!;(rl> 0 1 

C&,Q2,m2) = 167r ~i&a + &bLm I 

W-J) 

(A.10) 

C:;(~)(Z, $,m’) = 16~2{c$(n,<) +cjt!(rI,<)ln $}, (A.ll) 

Cift2?2, $m2, = ~~72&,!(o.~) + c!,!hO + [$,,lht, 

+$,l(w 01 ln 51 . (A.12) 

In the above expressions the coefficients cej, .?$ and C$ for k = T, L and 
i = q,g are defined in eqns.(5.3)- (5.6) of [25]. As has already been mentioned 
they are too long to be presented in a paper and they are available upon 
request. Like the coefficient functions in table 1 the heavy flavor contributions 
can be decomposed in color factors in a similar way. In first order in o, we 
have 

Ctf)(z, Q2 , m2) = T,C$@‘(z, Q2,m2), (A.13) 
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where Ct$s) denotes the photonic coefficient which is given in eqs(2.27) and 
(2.28) (see also (2.36)). In second order in a, the expressions are analogous 
to the ones presented for light quark production in (A.l), (A,3) and (A.4) 

C$(z,Q2,m2) = T,CFB~&,Q~,~*) > (A.14) 

C~$)(z,$n2) = T,C~D$(z,$n2), (A.15) 

and 

C[f)(z,$n2) = TIC~E~&$n2) +T,C~E~~(z,~,m’).(A.16) 

Notice that in the limit m + 0 the above expressions need an additional 
mass factorization. After this procedure is carried out the coefficients Bpp, 
DFF, EFF and EFA pass into their massless analogues defined in (A.l), (A.3) 
and (A.4). The order a, contributions to the photonic coefficient function 
C& can be derived from (A.16). It is equal to 

C.$%, Q2, m2) = CFEj&Q2,m2), (A.17) 
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Figure Captions 

Fig.1. The process e-(p,) + e+ --t e-(p:) + e+ + X, where X denotes any 
hadronic state. 

Fig.2. The lowest order Feynman diagrams contributing to the Born reac- 
tion y*(q) + T(k) + q + q. 

Fig.3. Feynman diagrams contributing to the one-loop correction to the 
process y*(q) + y(k) + Q + q. Additional graphs are obtained by 
reversing the arrows on the quark lines. Graphs containing the external 
quark self-energies are included in the calculation but not shown in the 
figure. 

Fig.4. The order g (a, = g2/4n) Feynmsn diagrams contributing to the 
gluon bremsstrahlung process y*(q) + y(k) -t q + 9 + g. Additional 
graphs are obtained by reversing the arrows on the quark lines. 

Fig.5. The z-dependence of F;(z,Q*) at Q2 = 5.9 (GeV/c)2, solid line: 
F,‘(NLO), long-dashed line: F,7(LO), short-dashed line: NLO heavy 
quark contributions, dotted line: LO heavy quark contributions. The 
data are from PLUTO [l]. 

Fig.6. The z-dependence of Fl(z,Q*) at Q2 = 5.9 (GeV/c)2, solid line: 
F,‘(NLO), long-dashed line: Fl(LO), short-dashed line: NLO heavy 
quark contributions, dotted line: LO heavy quark contributions. 

Fig.7. The z-dependence at LO of F.(r, Q2) at Q2 = 5.9 (GeV/c)2 for three 
choices of the mass factorization scale M2: A4 = 2Q (long-dashed line), 
M = Q (solid line) and M = Q/2 (short-dashed line). The data are 
from PLUTO [l]. 

Fig.& The z-dependence at LO of Fz(z, Q2) at Q2 = 5.9 (GeV/c)2 for three 
choices of the mass factorization scale M2: M = 2Q (long-dashed line), 
M = Q (solid line) and M = Q/2 (short-dashed line). 

Fig.9. The x-dependence at NLO of F.(z,Q*) at Q2 = 5.9 (GeV/c)2 for 
three choices of the mass factorization scale M2: M = 2Q (long-dashed 
line), M = Q (solid line) and M = Q/2 (short-dashed line). The data 
are from PLUTO [I]. 
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Fig.10. The z-dependence at NLO of Fl(z,Q*) at Q2 = 5.9 (GeV/c)2 for 
three choices of the mass factorization scale M2: M = 2Q (long-dashed 
line), M = Q (solid line) and M = Q/2 (short-dashed line). 

Fig.11 The z-dependence of the NLO massless (n, = 3) plus the mas- 
sive charm-quark contribution to F.(I, Q2) (solid line) compared with 
the NLO massless contribution (RI = 4, dashed line), at Q2 = 5.9 
(GeV/c)2. The data are from PLUTO [I]. 

Fig.12. The r-dependence of the NLO massless (n, = 3) plus the mss- 
sive charm-quark contribution to F~(z, Q2) (solid line) compared with 
the NLO massless contribution (n, = 4, dashed line), at Q2 = 5.9 
(GeV/c)*. 

Fig.13. The r-dependence of the LO and NLO massive hadronic charm 
contributions to F,‘(z,Q2) (solid lines) compared with the LO and 
NLO massive photonic charm contributions (dashed lines), at Q2 = 5.9 
(GeV/c)2. The NLO contributions are the larger ones. 

Fig.14 The s-dependence of the LO and NLO massive hadronic charm con- 
tributions to q(r, Q2) (solid lines) compared with the LO and NLO 
massive photonic charm contributions (dashed lines), at Q2 = 5.9 
(GeV/c)2. The NLO contributions are the larger ones. 

Fig.15. The r-dependence of FJ(r,Q*) at Q2 = 51 (GeV/c)2, solid line: 
F,7(NLO), long-dashed line: F$(LO), short-dashed line: NLO heavy 
quark contributions, dotted line: LO heavy quark contributions. The 
data are from AMY [6]. 

Fig.16. The z-dependence of F~(z, Q2) at Q2 = 51 (GeV/c)2, solid line: 
FZ(NLO), long-dashed line: F,?(W), short-dashed line: NLO heavy 
quark contributions, dotted line: LO heavy quark contributions. 

Fig.17. The z-dependence at LO of Fg(z, Q*) at Q2 = 51 (GeV/c)2 for three 
choices of the mass factorization scale M*: M = 2Q (long-dashed line), 
M = Q (solid line) and M = Q/2 (short-dashed line). The data are 
from AMY [6]. 
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Fig.18. The z-dependence at LO of F’l(z, Q*) at Q* = 51 (GeV/c)2 for three 
choices of the msss factorization scale M2: M = 2Q (long-dashed line), 
M = Q (solid line) and M = Q/2 (short-dashed line). 

Fig.19. The z-dependence at NLO of F;(s,Q’) at Q2 = 51 (GeV/c)2 for 
three choices of the msss factorization scale M2: M = 2Q (long-dashed 
line), M = Q (solid line) and M = Q/2 (short-dashed line). The data 
are from AMY [6]. 

Fig.20. The r-dependence at NLO of Fl(r,Q*) at Q2 = 51 (GeV/c)2 for 
three choices of the mass factorization scale M2: M = 2Q (long-dashed 
line), M = Q (solid line) and M = Q/2 (short-dashed line). 

Fig.21 The c-dependence of the NLO massless (a, = 3) plus the massive 
charm-quark contribution to F$(r, Q*) (solid line) compared with the 
NLO mssslesscontribution (n, = 4, dashed line), at Q2 = 51 (GeV/c)2. 
The data are from AMY [6]. 

Fig.22. The z-dependence of the NLO massless (n, = 3) plus the massive 
charm-quark contribution to Fl(r, Q2) (solid line) compared with the 
NLO mssslesscontribution (n, = 4, dashed line), at Q2 = 51 (GeV/c)2. 

Fig.23. The r-dependence of the LO and NLO massive hadronic charm 
contributions to F.(r,Q*) (solid 1’ mes compared with the LO and ) 
NLO massive photonic charm contributions (dashed lines), at Q2 = 51 
(GeV/c)*. The NLO contributions are the larger ones. 

Fig.24 The r-dependence of the LO and NLO massive hadronic charm con- 
tributions to Fl(s,Q’) (solid line) compared with the LO and NLO 
massive photonic charm contributions (dashed lines), at Q2 = 51 (GeV/c)*. 
The NLO contributions are the larger ones. 
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